PASAA
Vol. 25
December 1995

Writing an Authoring CALL Program

Phan Banpho
Chulalongkorn Umiversity [anguage Institute

ABSTRACT

Authoring programs are very useful because they offer language tcachers and
those involved in language teaching a convenient means of constructing excer-
cises and tests. This article encourages language teachers who have some
experienee i programming to write an authoring program [t discusses impor-
tant components of the authoring module, particularly the mput. editing. data
and mformation saving. This article also covers practical steps and techniques.
including how to retrieve the data input by the tecacher and how to mark

students”™ answers.

INTRODUCTION

The first half of the current decade has seen a
marked mmcrcase i the usc of instructional soft-
ware for language teaching and learning,
especially the use of computer-assisted language
lcarning (CAILL) programs. These programs are
either dedicated or authorable. Authoring pro-
grams are more widely used and often more
uscful than the dedicated or templated programs.
Onc of the most obvious reasons is that they pro-
vide teachers with an easy and non-technical way
of writing new data (Jones and Fortescue 1987:
42). In other words. they enable tcachers with no

programming cxperience (o construct exereises or
tests that smt their students. Despite this fact, there
are few authormg CALL programs written by lan-
guage teachers who teach a second or foreign
language. [n addition. after halt a decade’s expe-
nience i teaching and conducting workshops on
using microcomputers in language teaching, we
can affirm that many authoring programs are not
always user-friendly. Some are very demanding
while others ask vou to do a number of unneces-
sary tasks. The aim of this article. theretore, is to
encourage language teachers with some program-

PASAA Vol. 25 December 1995 7

ming experience to write an authoring CALL pro-
gram. It focuses on how to get started. the main
components, essential steps and techniques, the
writing of the delivery module, and some consid-
erations on writing an authoring program. The
sample programs are written in QuickBASIC.

How TO GET STARTED

One of the most practical ways to begin writing
an authoring CALL program is to think about the
student program, rather than the authoring pro-
gram, because it will determine what the authoring
program will look like and how it will run.

The student’s module

You need to visualize what the student’s program,
or module, will look like and how it will work,
because when you know this, you will know what
to include in the teacher’s module, or the
authoring module.

You may begin by thinking about the general
purpose of the student’s program, which may de-
rive from your need to help students and other
language teachers to correct students’ language
problems, or to enhance their ability to commu-
nicate more efficiently in the target language.
This general purpose will act as a guideline that
can help you define specific objectives, content,
screen design, students’ interaction with the pro-
gram, and a report on the students’ performance
after they have used the program.

The next step is to write a prototype, which is
a working model of the actual program. This pro-
totype should contain a sample of everything in the
program (Kearsley 1986: 28). To do this, you
need to search for relevant language content and
write the student’s module, using the computer
language with which you are most familiar. You
should spend time writing and revising this pro-
totype until you are satisfied with it. If possible,
you should try it out with the target students to ob-
serve how they learn from the program and how
they react to the program. You may have to sit
with the students and obscrve any difficulties that
might arise, including both errors and unexpected
problems. It may also be a good idea to try out
the program on some of your colleagues who will
give sincere comments and suggestions on the

program. After that, revise the prototype of the
student’s program. If possible, subject it to another
tnal run.

When designimg the student’s program, you
may also design a report on students’ perform-
ance. The report should be displayed on the screen
after each exercise has been done. and it would
be a good idea to have the report printed out. The
teacher can then give further advice to the stu-
dents. See Appendix One for an example of such
a report.

The teacher’s module

When you are satisfied with the student’s module,
you will be ready to consider the teacher’s mod-
ule, or the authoring module. You should use the
information obtained from the writing of the stu-
dent’s module and from the trial run to help you
visualize the teacher’s program. The visualization
should include the content, screen design, input/
output of the teacher’s responses, and how the
teacher can edit the data or information he or she
has input into the authoring program.

MAIN COMPONENTS OF AN AUTHORING
MODULE

To write an authoring program, you need to learn
some of its indispensable components. The fol-
lowing arc some of them.

1. Input component

The first is an mput component, which is a com-
ponent that allows the teachers to input their data
or information, often through the keyboard. The
data and information may consist of a text to read,
answers, explanations, suggestions, or hints. This
component should be carefully designed so that
language teachers with no programming experi-
ence can type in their data or information without
difficulty and frustration. In this component, you
have to write an input statement, e.g. LINE IN-
PUT (Norton and Holzner 1991: 5) in BASIC, or
open an output file to allow for the input of data.
In this portion of the program, you have to deal
with the most basic types of variables, string and
numeric variables, which are a crucial concept in
programming (Higgins and Johns 1984: 103). You
need to assign a set of characters to represent both

8 PASAA Vol. 25 December 1995

a string variable and a numeric variable. A string
vartable is used to store the text or passage and a
numeric variable to store a numeric value. Study
the following sample program in QuickBASIC,
which demonstrates how the INPUT statement is
used:

cLs

COLOR 15,0

LOCATE 2,5 : PRINT “Type a sentence in the space provided.”

COLOR 14,0

LOCATE 3, 5: LINE INPUT ", sent1$

The command in the last line will wait until
the teachers have input their sentence and the En-
ter key has been pressed.

2. Editing component

An authoring program also requires an editing
component, which allows teachers to correct or
edit the words, sentences, or passages they have
already mput. This component is very important
due to typing errors or your decision to change a
word, phrase, or sentence. In this component, the
original text will be displayed and the teachers will
be allowed 1o enter new data or corrections. This
component, in fact, is like an editor in a word
processing program. That 1s, you may design this
component so that teachers can edit their text in-
stde the authoring program they are using.
However, this also depends on your programming
ability. It you are a real novice programmer, you
may construct a line editor, which can edit only
one specific line at a time. In a line editor, you
cannot use an up- or down-arrow key to move the
cursor to the upper or fower line. However, since
this type of editor is also complicated, it will not
be discussed in this brief article. You can use a
ready-made line editor that comes with books
about programming techniques and utilities.

If you design an input component that opens
an output file and allows teachers to type in their
text using a word processing program, then the
editing component will be easy for you because
you will not have to write an editor for inputting
and editing text. However, it may be difficult for
the teachers because they will have to leave the
authoring program and use a word processing pro-
gram. This requirement may discourage some

language teachers who are not familiar with any
word processing program.

One important drawback of inputting data or
information from a word processing program is
that the text will be a text file, which can often be
read by using the 7ype statement of the Disk Op-
erating system (DOS). Thus, thosc students who
learn this command can look at the answers be-
fore they do the exercise or the test. However, to
prevent students from accessing the answers, we
can encrypt, or transform each character in the
answers in a systematic way and write a program
to decrypt these transformed data into the origi-
nal data (Kenning and Kenning 1983: 126). For
example, the character a can be encrypted into /
in the data file, then decrypted into the character
a agaim.

3. Data and information saving component

This 1s another important component because data
and information input by teachers must be saved
so that it can be retrieved when needed. No mat-
ter what editor you provide for the teachers to
input and edit their data, you need to open one or
more files to record it. For example. you need to
open a file to store the reading text, a file to keep
the questions and answers. a file in which to keep
a record of students’ scores, and a file in which
to keep the teachers™ personal data, such as their
names. Study the following sample program,
which can save a text input by the teachers. This
sample program can save a text of 15 lines.

OPEN “text1" FOR OUTPUT AS # 10
FORa=1t0 15

WRITE # 10, Line13%(a)

NEXT a

CLOSE # 10

This component is often filled with a number
of variables, both string and numeric varables.
Thus, you have to name each variable carefully so
that you can remember them all. 1f you are afraid
that you will not be able to remember them, write
comments or remarks. (In QuickBASIC, the com-
ment or remark follows an apostrophe. e.g. ‘ans1$
= answer1$). Another technique is to name a vari-
able according to its function, ¢.g. hint1.1$ for a
hint provided for the first answer. When dealing

PASAA Vol. 25 December 1995 9

with this component, make sure that you spell
each variable correctly and consistently, otherwise
you will not be able to retrieve the data stored in
each file. You should also be consistent in using
upper-case and lower-case letters because some
computer languages are case-sensitive. For exam-
ple, the ASCII code for the capital “A™ is 65 while
that for the small ““a” is 97. This results in the dif-
ference between Answer$ and answer$.

4. Help component

Since the main aim of a user-friendly authoring
program is to encourage language teachers to con-
struct their own lesson by using a ready-made
program, the help component is crucial. There
should be an adequate supply of relevant help
messages. In fact, help should be provided with-
out being asked. For example, when teachers
enter a wrong type of vanable, there should be a
message displayed on the screen telling teachers
that it is a wrong type of variable and suggesting
what the correct one should be. The help message
should be precise and concise.

STEPS AND TECHNIQUES

After you have visualized the authoring module,
you may construct a flowchart to demonstrate a
step-by-step progression of the program. Then,
follow these essential programming steps and
techniques.

I. Open an output data file to let the teachers
input (or type in) personal information, such as
their names, and to write (or store) that data to the
disk. This information will be displayed m the stu-
dent’s module so that students will know the
author of that particular exercise or test. Since
there are several types of files, and each has a dif-
ferent way by which it can be opened and read.
you may begin with the easiest type — a sequen-
tial file, which is a text or ASCII file — because
yvou do not have to deal with records or fields to
any great extent. In this type of file, data is stored
as a single line of text and terminated by a car-
riage-return and a line-feed (Microsoft 1988:
100). The input command is used in this file.
Study the following example:

CLs

OPEN “teacher” FOR OUTPUT AS # 1

LOCATE 8, 15 : PRINT “Please type your full name "
LOCATE 9, 15 : LINE INPUT *", thame$

CLOSE #1

In this sample program, the teacher will be
asked to input his or her name. Then, the name
may be stored in a string variablc called thame$,
after which this variable will be saved to a file e g.
“teacher|™. How to save the input data has already
been discussed in the Data and Information Sav-
ing component.

2. Open an output file for teachers to mput
their text. which may consist of a single sentence
or an entire passage. You may assign a string vari-
able named Line1$(j) to store each line of the
teachers’ text. Study the following example:

11
OPEN “textt” FOR OUTPUT AS #2
LOCATE 1, 15 : PRINT “Please type your text.”

lin=2
FORj=1TO 12
12

LOCATE lin, 2 . LINE INPUT ", Line1$ (j)
fin=lin + 1
j=j+
IFj <13 THEN
GOTO 1.2
ELSE
END IF
NEXT j
CLOSE #2

In this sample program, yvou can input a pas-
sage containing |2 lines.

3. Open an output tile to allow teachers to in-
put the questions, the best answer, and some
possible answers (e.g. eight answers). In this file,
you need to assign string variables to store the
question, the best answer, and any possible an-
swers. For example, vou may assign quest1$ for
the first question_ correct1$(c) for the best answer
and any possible answers. The variable cor-
rect1$(1) can be assigned tor the best answer.
Study the following example:

10 PASAA Vol. 25 December 1995

1.3 OPEN “correct!” FOR OUTPUTAS #3
COLOR 3,0

LOCATE 13, 2 : PRINT *What is the paragraph generally
about?”

COLO 13,0

LOCATE 14, 2 : PRINT "Please type 8 possible answers,”
LOCATE 14, 33 : PRINT “beginning from the best answer.”
row = 15

FORc=1T08

1.4 LOCATE row, 2 : PRINT “Ans”; ¢; : PRINT “"; : LINE IN-
PUT “, Correct1$ (c)

row =row + 1
c=c+1

IF ¢ <9 THEN
GOTO 1.4
ELSE

END IF

NEXT c
CLOSE #3

The output in the authoring module may look
like this:

Passage 1

Eat a biscuit or a slice of bread and make note of how you
go about it. But this is only the start of a long and compii-
cated process of digestion. There are a number of stages
in the process of digestion. First, the food is broken up by
the teeth, and the tongue then helps to mix the food with
the saliva. In the saliva there is an enzyme called ptyalin,
which changes sugar into starch. The salivary glands are
continuously secreting saliva into the mouth. Have you no-
ticed how active they are when you smell something good?
Your mouth waters.

—_

. What is the paragraph generally about?

Please type 8 possible answers, beginning from the best
answer

Ans 1: digestion

Ans 2: food digestion

Ans 3: process of digestion

Ans 4: complicated process of digestion

Ans 5: long and complicated process of digestion
Ans 6: a long and complicated process of digestion
Ans 7: stages in the process of digestion

Ans 8: —

4. Open an output file for the teachers to in-
put answers that are very close to the correct ones,
but are still unacceptable. In this case, the teach-
ers need to give explanations, suggestions, or hints
so that students will not repeat the same mistakes.
In this file, you may assign string variables to store

the answers and the explanations. You may. for
example, assign wrong1$(w) for all answers spect-
fied as wrong, and explain1$(e) for cxplanations.
suggestions, and hints. Study the sample program:

1.5 OPEN "wrong1” FOR OUTPUT AS # 4

LOCATE 16, 2 : PRINT "Please type 5 wiong answers that
need explanations.”

FORw=1TO5
1.6 COLOR7.0
FORrow=17TO 18
LOCATE row, 2 : PRINT "
NEXT row

LOCATE 17. 1 : PRINT “Wrong™. w ; "
wrong1$ (w)

LOCATE 18. 1 : PRINT “Expl.
explaint$ (w)

o LINE INPUT &7,
YTwo D LINE INPUT ¢t

w=w+ 1
IFw <6 THEN
GOTO 1.6
ELSE
END IF
NEXT w

CLOSE #4

The output in the authoring module may ook
ltke this:

Passage 1

Eat a biscuit or a slice of bread and make note of how you
go about it. But this is only the start of a long and compli-
cated process of digestion. There are a humber of stages
in the process of digestion First, the food is broken up by
the teeth, and the tongue then helps to mix the food with
the saliva. In the saliva there is an enzyme called ptyalin,
which changes sugar into starch. The salivary glands are
continuously secreting saliva into the mouth Have you no
ticed how active they are when you smell something good?
Your mouth waters.

—_

. Please type five wrong answers that need explanations
Wrong 1: buscuit
Expl. 1: SORRY, PLEASE READ LINES 2 AND 3

WRITING A DELIVERY MODULE

An authoring program is specially designed for
teachers. Therefore, to run or present the exercise
or test constructed by teachers. you also need to
write a delivery module. In fact, this module was
written as a prototype program before you began
writing the authoring program. However, that pro-
gram is not a full program and was not designed
to accept data and variables assigned in the

PASAA Vol. 25 December 1995 11

authoring program.

How to retrieve the data input by the teachers

In order to retrieve the data input by the teachers,
you need to open several input files to read the
data. If you do not open input files, you will not
be able to use the data prepared by the teachers.
These files are often opened at the beginning of
the delivery program because once they are
opened, all data will be available and ready for
use. However, they can also be opened whenever
they are needed.

To open such files, you may adapt the follow-
ing sample programs to suit your own individual
needs:

1. To read the name of the teacher who con-
structed the exercise

OPEN “teacher1” FOR INPUT AS #1
INPUT # 1, thame$
CLOSE #1

2. 'To read the text or passage

OPEN “text1” FOR INPUT AS #2
DO UNTIL EOF (2)
FORa=1t015

INPUT # 2, Line1$(a)
NEXT a
LOOP
CLOSE #2

3. o read the correct answers

OPEN “correct!” FOR INPUT AS #3
DO UNTIL EOF (3)
FORc=1to8
INPUT # 3. correct1$(c) -
NEXT ¢
LOOP
CLOSE #3

4. To read the wrong answers and explanations

OPEN “wrong1” FOR INPUT AS #4
DO UNTIL EOF (4)
FORw=1to5
INPUT # 4. wrong1$(w)
NEXT w
FORe=1to 15

INPUT # 4. explain1$(e)
NEXT e
LOOP
CLOSE #4

How the student’s answers are marked

This seems complicated. but once you know the
technique 1t is not too difficult. First, you should
know that computers do not actually mark or
correct the student’s answers but rather they com-
pare each answer with those input by the teacher.
It they match. then the student’s answer 1s ac-
cepted. If they do not match, then the answer i
rejected. Thus, before allowing students to enter
their answers in the delivery program, you need
to open data files to read the answers set by the
teachers. both the correct answers and those that
arc incorrect. These answers will then be com-
pared with those given by the students.

As regards the decision structures. especially

*the classic IF . THEN structure, you need 1o re-

fer to the correct variables storing the correct
answers and the wrong ones. Then, suggest that
the computer compare the existing variables with
those storing the student’s answers. I1f they match,
then display congratulatory messages and record
the scores. 11 they do not match. then display hints,
suggestions, or explanations. Study the following
sample programs.

I To evaluate the correct answers

FOR¢c=1TO8

11

IF ans1$ = correct1$(c) THEN

LOCATE 18, 20 : PRINT "VERY GOOD "
SLEEP 2
GOTO 12

NEXT ¢

ELSE
GOTO 1.1

END IF

2 To evaluate the wrong answers
FORe=1TOS5
11
IF ans1$ = wrong1$(e) THEN
LOCATE 18,5 : PRINT explaini$(e)
SLEEP 2

12 PASAA Vol. 25 Deccember 1995

GOTO 1.2
NEXTe
ELSE

GOTO 11
END IF

As for the rest, it remains the same as in an
ordinary dedicated CALL program. This means
that you have to write other portions of the deliv-
ery program.

SOME CONSIDERATIONS FOR WRITING AN
AUTHORING PROGRAM

To make vour authoring program run smoothly
and look professional. you may find the following
considerations useful.

I. Since computers are a highly visual me-
dium, the screen display should be carefully
designed because stimulating displays will often
contribute to holding a student’s attention and en-
hance his or her interest (Kearsley 1988: 6). They
can also facilitate learning. You should try to use
your knowledge of art, especially composition and
balance, to help you design different portions of
the screen.

2. For colors, remember that colors that are
too bright or too dim may have adverse effects on
students’ eyes. Thus, avoid displaying a long text
m these colors. To attract students’ attention, you
may make a word, phrase, or sentence blink (Cox
and Sullivan 1986: 435) or you may use different
size characters. Also. it 1s a good idea to let the
users choose both the foreground and background
colors. This can easily be done. You simply as-
sign numeric variabies to the number of colors,
and vary them according to the colors chosen by
the users. In addition, it is also necessary to con-
sider consistency of screen design and the use of
color (Clarke 1989: 31) because there is often
great temptation to overuse color and difterent
screen formats.

3. When asking the teacher to choose an op-
tion or response from the list given, you should
decide whether it is necessary to ask them to press
the Enter key after they have typed such a re-
sponse. 1f it is unnecessary, then use a program
function that continues your program without

waiting for the Enter key to be pressed. For ex-
ample, in QuickBASIC you can use the inkey$
function. However. if a decision is very important,
or if it may branch off to a different portion of the
program, then the use of this type of function is
not appropriate. For example, if you ask teachers
to choose between different types of questions,
then 1t may be better to ask them to type their re-
sponses and press the Enter key.

4. Reading from a computer screen s some-
times more difficult than reading from a page m
a book due to the brightness of the screen. We also
have to concentrate more when reading from the
screen than from a page in a book. Thus, avoid
crowding the screen. Instead. you should split a
long text into several portions and display cach
portion sequentially.

5. Because different people read at different
speeds, try to let the teachers and the students set
their own pace. In this regard, therefore, it is
common to usc the Press anv kev 1o continue
procedure. This means that the user can read a
message or a text as long as he or she wishes.

6. Sound cftects and background music can
make the program more interesting, but they may
also distract the user’s attention. Thus. it would
be better to let students choose whether they need
sound effects or not. To do this vou need to as-
sign a variable, often a numeric variable, for
storing the user’s response.

Writing an authoring program is interesting,
but you need to have adequate knowledge and
programming cxperience. This article has sug-
gested some ideas that may help vou learn how
to begin and how to deal with difterent compo-
nents or portions of an authoring program. It also
provides sample programs. which can be modi-
fied to suit your own particular necds. In addition,
it has pomted out that one of the most important
tasks in writing an authoring program is to open
data files for teachers to imput and save their data.
However. this article is far from comprehensive.
Teachers wishing to write authoring CALIL pro-
grams should study more about file management
and some of the other techniques that can make
their program more interesting and more useful.

PASAA Vol 25 December 1995 3

REFERENCES

Clarke, D. 1989. Design considerations in writing CALL software, with particular reference to
extended matenals. In Cameron. K. (Ed.), Computer Assisted Language Learnmng. Oxford:
Intellect.

Cox, M. J. and Sullivan, K. B. 1986 Structuring Programs in Microsoft BASIC. Boston. Massa-
chusetts: Boyd and Fraser.

Higgins, J. and Johns, T. 1984. Computers in Language Learning: London: Collins Fiducational.

Jones, C. and Fortescue, S. 1987. (/sing Computers in the Language Classroom. 1.ondon: Longman.

Kearsley, G. 1986. Authoring: A Guide to the Design of Instructional Software. Reading, Massa-
chusetts: Addison-Wesley.

Kenning, M. J. and Kenning, M-M. 1983 _4n Introduction 1o Computer Assisted Language [each-
ing. Oxford: Oxford University Press.

Microsoft. 1988. Programming in BASIC: QuickBASIC 4.5. New York: Microsoft Corporation.

Norton, P. and Holzner, S. 1991. Advanced BASIC. New York: Brady.

14 PASAA Vol. 25 December 1995

APPENDIX ONE — STUDENT’S REPORT

REPORT AND EVALUATION NO.
ID. NO: NO:
COURSE: GROUP:
DATE: TIME:

. PASSAGE NO:

0.

TEACHER’S SIGNATURE

. SCORI:
‘Total score — 30 Marks (5 questions)
Your score — 00
Percent -— 00.00%
PROGRAM'S COMMENT:

QUESTIONS NOT ANSWERED CORRECTLY:

STUDENT'S SIGNATURE:
()

FAARE AR R KRR ARk COR TEACHER ONLY #% %% stk koo ok ok ok

TEACHER'S COMMENTS / SUGGESTIONS / ASSIGNMENTS:
l.Seemeon / /199 a Room
2. Study from computer program(s) .

4. Do exercise

[]

[

[1 3.Study fromvideotape:
| _on page
[]

5 Read
6.

	4394
	4395
	4396
	4397
	4398
	4399
	4400
	4401
	4402

